大数据技术丛书:MATLAB数据分析与挖掘实战

售价 降价通知
市场价 ¥92.02
会员等级价格
  • 上架时间
    2022-04-18
  • 累积评价0人评价

  • 累计销量

  • 赠送积分65

  • 数量
    减少数量 增加数量   有货
平台自营
商家名称:
标准查询网
客服邮件:
2591325828@qq.com
客服电话:
010-62993931
在线客服:
QQ

扫一扫,手机访问微商城

推荐精品

同类品牌

最近上新

  • 商品名称:大数据技术丛书:MATLAB数据分析与挖掘实战
  • 商品编号:11712229
  • 品牌:
  • 上架时间:2022-04-18
精彩书摘:
  决策树是一树状结构,它的每一个叶节点对应着一个分类,非叶节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。对于非纯的叶节点,多数类的标号给出到达这个节点的样本所属的类。构造决策树的核心问题是在每一步如何选择适当的属性对样本进行拆分。对一个分类问题,从已知类标记的训练样本中学习并构造出决策树是一个自上而下分而治之的过程。 
  本节将详细介绍ID3算法,其也是最经典的决策树分类算法。 
  1.ID3算法简介及基本原理 
  ID3算法基于信息熵来选择最 佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。ID3算法根据信息论的理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小。因此,ID3算法在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的拆分,从而得到较小的决策树。
  ……
作者简介:
  张良均,资深大数据挖掘专家和模式识别专家,有10多年的大数据挖掘应用、咨询经验,10余年数据仓库系统管理与实施经验,超过10年的系统开发与设计经验。为电信、电力、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。此外,他精通JavaEE企业级应用开发,是广东工业大学和华南师范大学兼职教授,著有《神经网络实用教程》、《数据挖掘:实用案例分析》等畅销书。
内容简介:
  《大数据技术丛书:MATLAB数据分析与挖掘实战》共16章,共三篇。基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对《大数据技术丛书:MATLAB数据分析与挖掘实战》所用到的数据挖掘建模工具MATALB进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,《大数据技术丛书:MATLAB数据分析与挖掘实战》是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。提高篇(第16章),介绍了基于MATLAB二次开发的数据挖掘应用软件——TipDM数据挖掘建模工具,并以此工具为例详细介绍了基于MATLAB接口完成数据挖掘二次开发的各个步骤,使读者体验到通过MATLAB实现数据挖掘二次开发的强大魅力。
目录:
基础篇
第1章 数据挖掘基础
1.1 某知名连锁餐饮企业的困惑
1.2 从餐饮服务到数据挖掘
1.3 数据挖掘的基本任务
1.4 数据挖掘的建模过程
1.4.1 定义挖掘目标
1.4.2 数据取样
1.4.3 数据探索
1.4.4 数据预处理
1.4.5 挖掘建模
1.4.6 模型评价
1.5 常用的数据挖掘建模工具
1.6 小结
第2章 MATLAB数据分析工具箱简介
2.1 MATLAB的安装
2.2 MATLAB使用入门
2.2.1 MATLAB R2014a操作界面
2.2.2 MATLAB常用操作
2.3 MATLAB数据分析工具箱
2.4 配套附件使用设置
2.5 小结
第3章 数据探索
3.1 数据质量分析
3.1.1 缺失值分析
3.1.2 异常值分析
3.1.3 一致性分析
3.2 数据特征分析
3.2.1 分布分析
3.2.2 对比分析
3.2.3 统计量分析
3.2.4 周期性分析
3.2.5 贡献度分析
3.2.6 相关性分析
3.3 MATLAB主要数据的探索函数
3.3.1 统计特征函数
3.3.2 统计作图函数
3.4 小结
第4章 数据预处理
4.1 数据清洗
4.1.1 缺失值处理
4.1.2 异常值处理
4.2 数据集成
4.2.1 实体识别
4.2.2 冗余属性识别
4.3 数据变换
4.3.1 简单的函数变换
4.3.2 规范化
4.3.3 连续属性离散化
4.3.4 属性构造
4.3.5 小波变换
4.4 数据规约
4.4.1 属性规约
4.4.2 数值规约
4.5 MATLAB主要的数据预处理函数
4.6 小结
第5章 挖掘建模
5.1 分类与预测
5.1.1 实现过程
5.1.2 常用的分类与预测算法
5.1.3 回归分析
5.1.4 决策树
5.1.5 人工神经网络
5.1.6 分类与预测算法评价
5.1.7 MATLAB主要分类与预测算法函数
5.2 聚类分析
5.2.1 常用的聚类分析算法
5.2.2 K-Means聚类算法
5.2.3 聚类分析算法评价
5.2.4 MATLAB主要聚类分析算法函数
5.3 关联规则
5.3.1 常用的关联规则算法
5.3.2 Apriori算法
5.4 时序模式
5.4.1 时间序列算法
5.4.2 时间序列的预处理
5.4.3 平稳时间序列分析
5.4.4 非平稳时间序列分析
5.4.5 MATLAB主要时序模式算法函数
5.5 离群点检测
5.5.1 离群点的检测方法
5.5.2 基于统计模型的离群点的检测方法
5.5.3 基于聚类的离群点的检测方法
5.6 小结

实战篇
第6章 电力企业的窃漏电用户自动识别
6.1 背景与挖掘目标
6.2 分析方法与过程
6.2.1 数据抽取
6.2.2 数据探索分析
6.2.3 数据预处理
6.2.4 构建专家样本
6.2.5 构建模型
6.3 上机实验
6.4 拓展思考
6.5 小结
第7章 航空公司的客户价值分析
7.1 背景与挖掘目标
7.2 分析方法与过程
7.2.1 数据抽取
7.2.2 数据探索分析
7.2.3 数据预处理
7.2.4 模型构建
7.3 上机实验
7.4 拓展思考
7.5 小结
第8章 中医证型关联规则挖掘
8.1 背景与挖掘目标
8.2 分析方法与过程
8.2.1 数据获取
8.2.2 数据预处理
8.2.3 模型构建
8.3 上机实验
8.4 拓展思考
8.5 小结
第9章 基于水色图像的水质评价
9.1 背景与挖掘目标
9.2 分析方法与过程
9.2.1 数据预处理
9.2.2 构建模型
9.2.3 水质评价
9.3 上机实验
9.4 拓展思考
9.5 小结
第10章 基于关联规则的网站智能推荐服务
10.1 背景与挖掘目标
10.2 分析方法与过程
10.2.1 数据抽取
10.2.2 数据预处理
10.2.3 构建模型
10.3 上机实验
10.4 拓展思考
10.5 小结
第11章 应用系统负载分析与磁盘容量预测
11.1 背景与挖掘目标
11.2 分析方法与过程
11.2.1 数据抽取
11.2.2 数据探索分析
11.2.3 数据预处理
11.2.4 构建模型
11.3 上机实验
11.4 拓展思考
11.5 小结
第12章 面向网络舆情的关联度分析
12.1 背景与挖掘目标
12.2 分析方法与过程
12.2.1 数据抽取
12.2.2 数据预处理
12.2.3 构建模型
12.3 上机实验
12.4 拓展思考
12.5 小结
第13章 家用电器用户行为分析及事件识别
13.1 背景与挖掘目标
13.2 分析方法与过程
13.2.1 数据抽取
13.2.2 数据探索分析
13.2.3 数据预处理
13.2.4 模型构建
13.2.5 模型检验
13.3 上机实验
13.4 拓展思考
13.5 小结
第14章 基于基站定位数据的商圈分析
14.1 背景与挖掘目标
14.2 分析方法与过程
14.2.1 数据抽取
14.2.2 数据探索分析
14.2.3 数据预处理
14.2.4 构建模型
14.3 上机实验
14.4 拓展思考
14.5 小结
第15章 气象与输电线路的缺陷关联分析
15.1 背景与挖掘目标
15.2 分析方法与过程
15.2.1 数据抽取
15.2.2 数据探索分析
15.2.3 数据预处理
15.2.4 模型构建
15.3 上机实验
15.4 拓展思考
15.5 小结

提高篇
第16章 基于MATLAB的数据挖掘二次开发
16.1 混合编程应用体验——TipDM数据挖掘平台
16.1.1 建设目标
16.1.2 模型构建
16.1.3 模型发布
16.1.4 模型调用
16.1.5 模型更新
16.2 二次开发过程
16.2.1 接口算法编程
16.2.2 用Library Compiler创建Java组件
16.2.3 安装MATLAB运行时环境
16.2.4 JDK环境及设置
16.2.5 接口函数的调用
16.3 小结
参考文献
商品评价
  • 0%

    好评度

  • 好评(0%)
    中评(0%)
    差评(0%)
  • 全部评价(0)
  • 好评(0)
  • 中评(0)
  • 差评(0)
  • 用户晒单(0)
售后保障
售前服务电话:010-62993931
售后服务电话:010-62993931
本商城向您保证所售商品均为正品行货。本商城还为您提供具有竞争力的商品价格和运费政策,请您放心购买!

注:因厂家会在没有任何提前通知的情况下更改产品包装、产地或者一些附件,本司不能确保客户收到的货物与商城图片、产地、附件说明完全一致。只能确保为原厂正货!若本商城没有及时更新,请大家谅解!
权利声明:
本商城上的所有商品信息、客户评价、商品咨询、网友讨论等内容,是标准查询网重要的经营资源,未经许可,禁止非法转载使用。

注:本站商品信息均来自于厂商,其真实性、准确性和合法性由信息拥有者(厂商)负责。本站不提供任何保证,并不承担任何法律责任。

常见问题
下单后可以修改订单吗?

由本网站发货的订单,在订单发货之前可以修改,打开“订单详情”页面,若已经出现物流信息,则表示订单无法修改。

无货商品几天可以到货?

您可以通过以下方法获取商品的到货时间:若商品页面中,显示“无货”时:商品具体的到货时间是无法确定的,您可以通过商品页面的“到货通知”功能获得商品到货提醒。

订单如何取消?

如订单处于暂停状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮,若已经有物流信息,则不能取消订单。

可以开发票吗?

本网站所售商品都是正品行货,均开具正规发票(图书商品用户自由选择是否开发票),发票金额含配送费金额,另有说明的除外。

如何联系商家?

在商品页面右则,您可以看到卖家信息,点击“联系客服”按钮,咨询卖家的在线客服人员,您也可以直接致电。

收到的商品少了/发错了怎么办?

同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议您耐心等待1-2天,如未收到,本网站自营商品可直接联系标准查询网在线客服。

如何申请退货/换货?

登陆网站,进入“我的订单”,点击客户服务下的返修/退换货或商品右则的申请返修/退换货,出现返修及退换货首页,点击“申请”即可操作退换货及返修,提交成功后请耐心等待,由专业的售后工作人员受理您的申请。

退/换货需要多长时间?

一般情况下,退货处理周期(不包含检测时间):自接收到问题商品之日起 7 日之内为您处理完成,各支付方式退款时间请点击查阅退款多久可以到账;
换货处理周期:自接收到问题商品之日起 15 日之内为您处理完成。

温馨提示

确定取消
温馨提示

关闭
您尚未登录

用户登陆

立即注册
忘记密码?