冶金流程集成理论与方法(英文版)

售价 降价通知
市场价 ¥278.50
会员等级价格
  • 上架时间
    2022-03-26
  • 累积评价0人评价

  • 累计销量

  • 赠送积分198

  • 数量
    减少数量 增加数量   有货
平台自营
商家名称:
标准查询网
客服邮件:
2591325828@qq.com
客服电话:
010-62993931
在线客服:
QQ

扫一扫,手机访问微商城

推荐精品

同类品牌

最近上新

  • 商品名称:冶金流程集成理论与方法(英文版)
  • 商品编号:12041380
  • 品牌:
  • 上架时间:2022-03-26
内容简介:
  《冶金流程集成理论与方法(英文版)》是一本关于冶金过程工程理论与工程运行实践并重的专著。作者近年来对冶金流程动态运行的物理本质进行了深入的理论探索,以三类物理系统为理论基础,阐述了流程动态运行的基本概念、要素和规律,讨论了制造流程中物质流、能量流、信息流相互作用和协同运行的关系,提出了建立新一代钢铁制造流程的理论框架和钢厂动态精准设计的概念、理论和方法。从理论上论证了新一代钢铁制造流程应具有三个功能,即钢铁产品制造功能、能源转换功能、废弃物消纳—处理和再资源化功能。
目录:
Author Biography
Foreword
Preface
Acknowledgments
1. Introduction
1.1 Dynamism
1.2 Structurity
1.3 Continuity
1.4 Embedding
1.5 Synergism
1.6 Functionalism
References

2. Concept and Theory of Dynamic Operation
of the Manufacturing Process
2.1 Process System and Basic Concepts
2.1.1 Process Manufacturing Industry
2.1.2 Spatiotemporal Scales of the Processes
2.1.3 Processes and Manufacturing Process
2.2 Process Engineering and Manufacturing Process Engineering
2.2.1 Engineering and Engineering Science
2.2.2 Process Engineering
2.2.3 Manufacturing Process Engineering
2.3 Physical Essence of Dynamic Operation of the Manufacturing
Process System
2.3.1 Features of Manufacturing Process
2.3.2 Essence and Functions of Steel Manufacturing Process
2.4 Operation Process and Physical Levels of Dynamic
Process System
2.4.1 Physical Features of Dynamic Running of
Manufacturing Process
2.4.2 Three Kinds of Physical Systems
2.5 Evolution of Thermodynamics
2.5.1 From Thermomechanics to Thermodynamics
2.5.2 Classification of Thermodynamic System
2.5.3 Irreversibility
2.5.4 Processing Within Steady State——Near
Equilibrium Region
2.5.5 Linear Irreversible Process
2.6 Open System and Dissipative Structure
2.6.1 What Is the Dissipative Structure
2.6.2 Features of the Dissipative Structure
2.6.3 Formation Conditions of Dissipative Structure
2.6.4 Fluctuations, Nonlinear Interaction, and
Self-Organization in Engineering System
2.6.5 Critical Point and Critical Phenomenon
References

3. Basic Elements of Dynamic Operation of the Steel
Manufacturing Process
3.1 "Flow" in the Manufacturing Processes——Mass Flow,
Energy Flow, Information Flow
3.2 Relationship Between Mass Flow and Energy Flow
3.3 Mass Flow/Energy Flow and Information Flow
3.4 "Network" of Manufacturing Process
3.4.1 What Is the "Network"
3.4.2 How to Study "Network"
3.5 "Program" of Manufacturing Process Running
3.6 Dissipation in Dynamic-Orderly Operation System
3.6.1 "Flow" Patterns and Dissipation
3.6.2 Operation Rhythm and Dissipation
3.6.3 Distribution of Procedure's Functions and Dissipation
3.7 Forms and Connotation of Time Factors in Steel
Manufacturing Process
3.8 Contents and ObJectives for Dynamic Operation of Steel
Manufacturing Process
3.8.1 Recognition Thinking Way
3.8.2 Research Contents of the Discipline
3.8.3 Strategic Objectives of Research
References

4. Characteristics and Analysis of the Dynamic
Operation of Steel Manufacturing Process
4.1 Research Method of Dynamic Operation Process
4.1.1 Evolution of Vision and Conception
4.1.2 Research Method of Process Engineering
4.2 Dynamic Operation and Structure Optimization of
Process System
4.2.1 Process System and Structure
4.2.2 Connotations of Steel Plant Structure and the Trend
of Steel Plant Restructuring
4.2.3 Dynamic Mechanics and Rules of the Macroscopic
Operation in Manufacturing Process
4.2.4 The Relationship Between Dynamic Operation and
Structure Optimization of Process
4.3 Self-Organization of Manufacturing Process and
Hetero-Organization with Information
4.3.1 Self-Organization and Hetero-Organization of Process
4.3.2 Self-Organization Phenomenon in Steel Manufacturing
Process
4.3.3 Self-Organization and Hetero-Organization in Process
Integration
4.3.4 Impact of Informatization on Self-Organization and
Hetero-Organization
4.4 Dynamic Operation of Mass Flow and Time-Space
Management
4.4.1 Dynamic Regulation of the Time and the Dynamic
Operation Gantt Chart
4.4.2 Conception of Clean Steel and the High-Efficiency
and Low-Cost Clean Steel Production Platform
4.4.3 High-Efficiency and Low-Cost Clean Steel Production
Platform and the Dynamic Operation Gantt Chart
4.4.4 Laminar Type or Stochastic Type Running of Mass Flow
in Steel Production Processes
4.5 Function and Behavior of Energy Flow, and Energy Flow
Network in the Steel Manufacturing Process
4.5.1 The Deeper Understanding of Physical Essence and
Operation Rules of the Steel Manufacturing Process
4.5.2 Research Method and Feature of Energy Flow in the
Process
4.5.3 Energy Flow and Energy Flow Network in Steel Plants
4.5.4 Macroscopic Operation Dynamics of the Energy Flow
in the Steel Manufacturing Process
4.5.5 Energy Flow Network Control System and Energy
Control Center
References

5. Dynamic Tailored Design and Integration Theory of Steel Plants
5.1 Traditional Design and its Present Status
5.1.1 How to Recognize Design
5.1.2 Situation of Design Theory and Design Method
5.1.3 Present Status of Design Theory and Methodology for Steel Plants in China
5.2 Engineering Design
5.2.1 Engineering and Design
5.2.2 Innovation View of Engineering Design
5.2.3 Engineering Design and Knowledge Innovation
5.2.4 Engineering Design and Dynamic Tailored Solution
5.3 Design Theory and Methodology for Steel Plants
5.3.1 Background for Innovation of Steel Plant Design Theory and Method
5.3.2 Theory, Concept, and Development Trend of Steel Plant Design
5.3.3 Innovation Roadmap of Steel Plant Design Method
5.3.4 Dynamic Coupling in Steel Manufacturing Process's Dynamic-Orderly Operation
5.3.5 Energy Flow Network of Steel Manufacturing Process
5.4 Dynamic Tailored Design for Steel Plant
5.4.1 Difference Between Traditional Static Design and Dynamic Tailored Design for Steel Plant
5.4.2 Process Model for the Dynamic Tailored Design
5.4.3 Core Idea and Step of the Dynamic Tailored Design
5.5 Integration and Structure Optimization
5.5.1 Integration and Engineering Integration
5.5.2 Structure of Steel Plant
References

6. Case Study
6.1 Process Structure Optimization in Steel Plant and BF Enlargement
6.1.1 Development Trend of BF Ironmaking
6.1.2 BF Enlargement with the Premise of the Optimization of Process Structure in Steel Plants
6.1.3 A Comparison of Technological Equipment of BFs with Different Volumes
6.1.4 Discussions
6.2 Interface Technology Between BF-BOF and Multifunctional Hot Metal Ladle
6.2.1 General Idea of Multifunction Hot Metal Ladle
6.2.2 Multifunction Hot Metal Ladle and Its Practice at Shougang Jingtang Steel
6.2.3 Practice of Multifunction Hot Metal Ladle at Shagang Group
6.2.4 Discussions
6.3 De[S]-De[Si]/[P] Pretreatment and High-Efficiency and Low-Cost Clean Steel Production Platform
6.3.1 Why Adopt the De[S]-De[Si]/[P] Pretreatment
6.3.2 Analysis-Optimization of Procedure Functions and Coordination-Optimization of Procedure Relationships in the De[S]-De[Si]/[P] Pretreatment
6.3.3 A Case Study on Full Hot Metal Pretreatment—— Steelmaking Plant in Wakayama Iron & Steel Works of Former Sumitomo Metal Industries
6.3.4 Different Types of Steel Plants with De[S]-De[Si]/[P] Pretreatment in Japan
6.3.5 Development of De[S]-De[Si]/[P] Pretreatment in Korea
6.3.6 Design and Operation of De[S]-De[Si]/[P] Pretreatment at Shougang Jingtang Steel in China
6.3.7 A Conceived High-Efficiency and Low-Cost Clean Steel Production Platform (Large-Scale Full Sheet Production Steelmaking Plant)
6.3.8 Theoretical Significance and Practical Value of De[S]-De[Si]/[P] Pretreatment
6.4 Optimization of Interface Technology Between CC and Bar Rolling Mill
6.4.1 Technological Base of Billet Direct Hot Charging
6.4.2 Practical Performance of Billet Direct Hot Charging Between No.6 Caster and No.1 Bar Rolling Mill
6.4.3 Practical Performance of Billet Direct Hot Charging Between No.5 Caster and No.2 Bar Mill
6.4.4 Progress on Fixed Weight Mode
6.4.5 Discussions
Appendix A: Turnover Time Statistics of Steel Ladle in No.2
Steelmaking and Hot rolling Plant in Tangsteel
References
7. Engineering Thinking and a New Generation of Steel Manufacturing Process
7.1 Engineering Thinking
7.1.1 Relationship Among Science, Technology, and Engineering
7.1.2 Characteristics of Thinking Mode in Chinese Culture
7.1.3 An Engineering Innovation Road in the "Reductionism" Deficiency
7.2 Engineering Evolution
7.2.1 Concept and Definition of Evolution
7.2.2 Technology Advancement and Engineering Evolution
7.2.3 Integration and Engineering Evolution
7.3 Thinking and Study of a New Generation of the Steel Manufacturing Process
7.3.1 Conception Study of Steel Manufacturing Process
7.3.2 Study of Top Level Design in the Process
7.3.3 Process Dynamic Tailored Design
7.3.4 Study of the Entire Process Dynamic Operation Rules
7.3.5 Some Recognization for the New Generation of the Steel Manufacturing Process
7.4 Development Direction of Metallurgical Engineering in the View of Engineering Philosophy
References
Index
商品评价
  • 0%

    好评度

  • 好评(0%)
    中评(0%)
    差评(0%)
  • 全部评价(0)
  • 好评(0)
  • 中评(0)
  • 差评(0)
  • 用户晒单(0)
售后保障
售前服务电话:010-62993931
售后服务电话:010-62993931
本商城向您保证所售商品均为正品行货。本商城还为您提供具有竞争力的商品价格和运费政策,请您放心购买!

注:因厂家会在没有任何提前通知的情况下更改产品包装、产地或者一些附件,本司不能确保客户收到的货物与商城图片、产地、附件说明完全一致。只能确保为原厂正货!若本商城没有及时更新,请大家谅解!
权利声明:
本商城上的所有商品信息、客户评价、商品咨询、网友讨论等内容,是标准查询网重要的经营资源,未经许可,禁止非法转载使用。

注:本站商品信息均来自于厂商,其真实性、准确性和合法性由信息拥有者(厂商)负责。本站不提供任何保证,并不承担任何法律责任。

常见问题
下单后可以修改订单吗?

由本网站发货的订单,在订单发货之前可以修改,打开“订单详情”页面,若已经出现物流信息,则表示订单无法修改。

无货商品几天可以到货?

您可以通过以下方法获取商品的到货时间:若商品页面中,显示“无货”时:商品具体的到货时间是无法确定的,您可以通过商品页面的“到货通知”功能获得商品到货提醒。

订单如何取消?

如订单处于暂停状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮,若已经有物流信息,则不能取消订单。

可以开发票吗?

本网站所售商品都是正品行货,均开具正规发票(图书商品用户自由选择是否开发票),发票金额含配送费金额,另有说明的除外。

如何联系商家?

在商品页面右则,您可以看到卖家信息,点击“联系客服”按钮,咨询卖家的在线客服人员,您也可以直接致电。

收到的商品少了/发错了怎么办?

同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议您耐心等待1-2天,如未收到,本网站自营商品可直接联系标准查询网在线客服。

如何申请退货/换货?

登陆网站,进入“我的订单”,点击客户服务下的返修/退换货或商品右则的申请返修/退换货,出现返修及退换货首页,点击“申请”即可操作退换货及返修,提交成功后请耐心等待,由专业的售后工作人员受理您的申请。

退/换货需要多长时间?

一般情况下,退货处理周期(不包含检测时间):自接收到问题商品之日起 7 日之内为您处理完成,各支付方式退款时间请点击查阅退款多久可以到账;
换货处理周期:自接收到问题商品之日起 15 日之内为您处理完成。

温馨提示

确定取消
温馨提示

关闭
您尚未登录

用户登陆

立即注册
忘记密码?